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Hagfish and lampreys are the only living representatives of the
jawless vertebrates (agnathans), and compared with jawed verte-
brates (gnathostomes), they provide insight into the embryology,
genomics, and body plan of the ancestral vertebrate. However, this
insight has been obscured by controversy over their interrelation-
ships. Morphological cladistic analyses have identified lampreys
and gnathostomes as closest relatives, whereas molecular phylo-
genetic studies recover a monophyletic Cyclostomata (hagfish and
lampreys as closest relatives). Here, we show through deep
sequencing of small RNA libraries, coupled with genomic surveys,
that Cyclostomata is monophyletic: hagfish and lampreys share 4
unique microRNA families, 15 unique paralogues of more primitive
microRNA families, and 22 unique substitutions to the mature gene
products. Reanalysis of morphological data reveals that support
for cyclostome paraphyly was based largely on incorrect charac-
ter coding, and a revised dataset is not decisive on the mono- vs.
paraphyly of cyclostomes. Furthermore, we show fundamental
conservation of microRNA expression patterns among lamprey,
hagfish, and gnathostome organs, implying that the role of micro-
RNAs within specific organs is coincident with their appearance
within the genome and is conserved through time. Together, these
data support the monophyly of cyclostomes and suggest that the
last common ancestor of all living vertebrates was a more complex
organism than conventionally accepted by comparative morphol-
ogists and developmental biologists.

complexity | cyclostomata | evolution | organ | homology

he origin and early evolution of vertebrates have been a focus

of molecular and organismal evolutionary biology because of
the fundamental events that attended this formative episode of
our own evolutionary history over one-half billion years ago (1).
However, attempts to integrate these perspectives have been
stymied by the different phylogenetic perspectives afforded by
molecular and morphological datasets. Molecular datasets, in-
corporating protein-coding genes, ribosomal RNA genes, and/or
mitochondrial genes (2-21), invariably find that the jawless hag-
fish and lampreys constitute a clade, Cyclostomata (Fig. 1, on the
left). In contrast, morphological datasets (22-36) have supported
a closer relationship between lampreys and gnathostomes, ren-
dering Cyclostomata paraphyletic (Fig. 1, on the right) and hag-
fish not vertebrates but mere craniates (33).

Attempts have been made to reconcile these two views: a num-
ber of morphological characters have been identified that support
the monophyly of cyclostomes (37, 38), but they have been over-
whelmed by a seemingly far greater number of characters sup-
porting cyclostome paraphyly (30, 31). Indeed, an analysis of
combined morphological and molecular datasets has suggested
that the signal of cyclostome paraphyly in morphological datasets
is stronger than the signal for monophyly from molecular data
(39). The interrelationships of hagfish, lampreys, and gnathos-
tomes thus remain uncertain, and this has become a classic ex-

WWww.pnas.org/cgi/doi/10.,1073/pnas.1010350107

ample of phylogenetic conflict between morphological and mo-
lecular data (7, 39). If morphological phylogenies are correct,
hagfish provide an experimental model for investigating the evo-
lutionary assembly of the vertebrate body plan shared by lampreys
and gnathostomes. Alternatively, if the molecular phylogenies
are correct, then it would indicate that the shared similarities of
lampreys and gnathostomes are convergent or that these charac-
ters are absent through loss in the hagfish lineage. These would
represent the most extraordinary examples of convergence or de-
generacy, respectively, in vertebrate evolutionary history (18, 35).

We attempted to resolve the interrelationships of hagfish,
lampreys, and gnathostomes through analysis of their microRNA
(miRNA) repertoire. miRNAs are small, noncoding regulatory
genes implicated in the control of cellular differentiation and ho-
meostasis and as such, might be involved in the evolution of com-
plexity (40-42). Because ancient miRNAs show a level of sequence
conservation exceeding that of ribosomal DNA (43), it is possible to
discern the evolutionary origins of miRNA families at even the
deepest levels of animal phylogeny (43, 44). The rarity with which
ancient miRNAs were lost within most evolutionary lineages,
coupled with the continuous acquisition of miRNAs through geo-
logic time in all metazoan lineages examined to date, makes
miRNAs one of the most useful classes of characters in phyloge-
netics (45). Thus, miRNAs can be used to discern the interrela-
tionships among the major vertebrate lineages and simultaneously,
lend insight into the origin of vertebrate characteristics.

We constructed small RNA libraries from total RNA (Meth-
ods) from ammocoete larvae of the brook lamprey Lampetra
planeri, from a single adult individual of the Atlantic hagfish
Myxine glutinosa, from the catshark Scyliorhinus canicula, and for
nine individually processed organs/regions (brain, gills, gut,
heart, kidney, liver, mouth, muscle, and skin) from a single adult
individual of the sea lamprey Petromyzon marinus. Using a com-
bination of high-throughput 454 pyrosequencing and Illumina
technology, we identified miRNAs from each library and found
that shared gains of miRNAs support the monophyly of cyclo-
stomes (lamprey and hagfish). We also revised, expanded, and
reanalyzed an extensive morphological dataset previously found
to support cyclostome paraphyly (23) and show that cyclostome
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Fig. 1. The two competing hypotheses. Either lampreys are more closely re-
lated to hagfish than they are to gnathostomes, making Cyclostomata mono-
phyletic (on the left), or lampreys are more closely related to gnathostomes
than they are to hagfish, making Cyclostomata paraphyletic (on the right).

monophyly is just as likely given these data. In addition, profiling
the miRNA expression within nine organs of P. marinus shows
conservation with known expression profiles in homologous
organs across vertebrates. Our data suggest that the role of
miRNAs within specific organs is coincident with their appear-
ance within the genome, and thus, miRNAs may have played
a role in the acquisition of organismal complexity in vertebrates.

Results and Discussion

miRNAs Shared Between Lampreys and Hagfish Support Cyclostome
Monophyly. Derivative cDNA libraries from the brook lamprey
L. planeri, the sea lamprey P. marinus, and the Atlantic hagfish
M. glutinosa were sequenced using high-throughput 454 pyrose-
quencing (Methods), yielding 422,122 (59,759 nonredundant)
parsed high-quality reads. Additionally, we sequenced small
RNAs from the catshark Scyliorhinus canicula using Illumina tech-
nology, yielding 333,294 (127,015 nonredundant) parsed high-
quality reads. The resulting reads from all four taxa were then
interrogated using miRMiner (43) to identify known and unknown
miRNAs (Dataset S1).

Because the genome traces of the sea lamprey P. marinus are
publicly available (http://www.ncbi.nlm.nih.gov/genomeprj?term=
petromyzon), we first focused on elucidating the miRNA reper-
toire of this species. We identified 245 miRNA genes in P. marinus,
including one family lost in gnathostomes (miR-315) and a second
family lost in osteichthyans (mir-281) (Dataset S1). An additional
24 miRNA genes are inferred to be present in the genome of
P. marinus, because, although the genes could not be located in the
trace archives, reads of these phylogenetically conserved miRNAs
were discovered in our libraries (e.g., miR-31, -34, -122, etc.)
(Dataset S1). Of the 269 genes present in P. marinus, 202 are
conserved in other animals, with 21 shared only with the brook
lamprey, L. planeri (Dataset S1).

Lampreys lack the bilaterian miRNAs miR-71, miR-242, miR-
252, and miR-278, as do urochordates and all other vertebrates
examined to date. However, very few miRNA genes have been
lost within the lamprey lineage itself: only a single miRNA family
seems to have been lost in P. marinus (miR-214), because reads
were detected in L. planeri (Dataset S1); however, reads were
not detected in P. marinus, and the gene was not located in the
trace archives. Conversely, we failed to detect transcripts of only
two miRNA families in L. planeri—the lowly expressed miRNAs
(Dataset S1) miR-202 and miR-875 (although we did not ex-
amine reads from an adult individual, and no genomic sequence
for this species is currently available to confirm a true absence).
Therefore, these two lamprey species share a miRNA comple-
ment of at least 200 genes and between them, have together lost
no more than three miRNA families total since they last shared
a common ancestor some time in the last 10-40 million y (10).

19380 | www.phas.org/cgi/doi/10.1073/pnas. 1010350107

To determine the phylogenetic position of hagfish, we ana-
lyzed the conserved miRNA complement of M. glutinosa. Of the
46 vertebrate-specific miRNA families shared between lamprey
and gnathostomes (Fig. 2), we detected all but two in our hagfish
library: miR-1329 (which is expressed exclusively in the lamprey
kidney) (Dataset S1) and miR-4541, an miRNA family found thus
far only in the two sharks and the two lamprey species (Dataset
S1). However, the hagfish shares four unique miRNA families
with the lampreys that are not found or expressed in gnathos-
tomes or in any other animal species investigated to date, miR-
4542, miR-4543, miR-4544, and miR-4545 (Dataset S1 and Fig.
S1), and a phylogenetic analysis based on the presence and ab-
sence of miRNA families (Dataset S2) supports the monophyly of
the cyclostomes (Fig. 2 and Fig. S2).

Further evidence of cyclostome monophyly is found in the
paralogy group relations within miRNA families (46). Fifteen
paralogues of previously described miRNA families (Fig. 3 and
Dataset S1) are shared by the hagfish and lampreys to the ex-
clusion of gnathostomes—we did not detect a single paralogue
supporting cyclostome paraphyly. Finally, we examined the ma-
ture sequences of each miRNA to ask if polarizable nucleotide
substitutions had occurred that supported either cyclostome
monophyly or paraphyly (or some other set of relations). We did
not find any nucleotide substitutions in the mature sequence of
any vertebrate miRNA that is shared between gnathostomes and
lampreys to the exclusion of hagfish (or between hagfish and
gnathostomes to the exclusion of lamprey). However, we did find
22 derived nucleotide substitutions in the mature sequences of
18 miRNAs exclusive to the three cyclostome taxa investigated
(Fig. 3 and Dataset S1). Thus, the acquisition of miRNA fami-
lies, miRNA genes, and the nucleotide substitution patterns of
conserved miRNA genes all support cyclostome monophyly.

Phenotypic Cladistic Data Do Not Distinguish Between Cyclostome
Monophyly vs. Paraphyly. The phylogenetic distribution of verte-
brate miRNAs corroborates molecular sequence data in sup-
porting cyclostome monophyly (2-21), contradicting what has
been considered an equally strong signal from phenotypic datasets
supporting cyclostome paraphyly (22-36). To determine the
source of this discordance, we augmented a phenotypic dataset
based on the nervous system (23), with characters representative
of other organ systems recoded from observations and the pri-
mary literature rather than recycled from previous analyses (S/
Text and Dataset S3). In so doing, we considered all characters
that have been marshaled previously in support of cyclostome
monophyly or paraphyly. We find that, although the revised
dataset (SI Text) marginally favors cyclostome paraphyly (mono-
phyly is one step longer in a tree of 237 steps) (Fig. S3), Tem-
pleton (47), Kishino—Hasegawa (48), and approximate two-tailed
Shimodaira-Hasegawa (49) tests reveal that the dataset is
indecisive on this question (Templeton: P = 0.8415; K-H: P =
0.8421; approximate S-H is one-half P of K-H) (49). This is be-
cause much of the evidence traditionally interpreted as supporting
cyclostome paraphyly has been based on spurious character de-
sign. For example, many of the characters are inapplicable to the
outgroup, making it impossible to discriminate between the pri-
mary or secondary absence in hagfish of characters otherwise
found only in lampreys and gnathostomes (e.g., the proximity of
the atrium and ventricle of the heart, radial muscles, and retinal
synaptic ribbons). In addition, some characters have been coded
as absent in hagfish when data have merely been lacking (e.g.,
heart response to catecholamines, pituitary control of gameto-
genesis, and sexual dimorphism). Finally, the uncritical recycling
of characters and their codings between generations of analyses
has resulted in the repeated use of obsolete data (50). For in-
stance, similarities in the immune system of lampreys and gna-
thostomes have been exploited to draw a distinction from hagfish
(30-35, 51). However, it has been long established that lampreys
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Phylogenetic distribution of all miRNA families analyzed in chordates (see Dataset S2 for data matrix and Fig. S2 for complete phylogenetic analysis).

Cyclostomes share four miRNA families not found in any other animal species investigated to date, and a maximum parsimony analysis supports the
monophyly of Cyclostomata. Note that miRNA families specific to a single species are not indicated, but losses of more primitive families are indicated. Of
particular interest is the number of miRNA families acquired in the stem lineage leading to the vertebrate crown group.

and hagfish share a distinct type of adaptive immune system based
on variable lymphocyte receptors, rather than the Ig-based T and
B antigen receptors that characterize the lymphocytes of jawed
vertebrates (52), and thus, similarities in the immune system of
lampreys and jawed vertebrates are convergent.

miRNA Expression Profiles Are Conserved Across Vertebrates. The
origin of vertebrates occurred in association with a very high
rate of miRNA family innovation, and it has been proposed that
this is a causal association, because where expression data are
available, vertebrate miRNAs are often expressed in tissues and
organs that are unique to vertebrates (41). This hypothesis pre-
dicts that the organ-specific expression of vertebrate-specific
miRNAs is highly conserved, such that data from the zebrafish
(Danio) and the mouse (Mus) are representative not only of

miR-19
Hsa-a UGUGCAAAUCUA-UGCAAAACUGA
Dreea UGUGGCAAAUGCUA-UGCAAAACUGA
paralogue a | ppg-q UGUGCAAACCUA-GCAAA CUGA
Lpl-a UGUGCAAACUA-GGAAA cCuGA
\Mol-a UGUGCAAAlcUA-UGGCAAAGCUGA
[Hsab UGUGCAAAUCGA-UGCAAAACUGA
Dreeb UGUGCAAAUC|CA-UGCAAAACUGA
paralogueb |Cmi-b UGUGCAAAUC|CIA-©GCAAAACUGA
Pma-b UGUGCAAAUC|CA-UGCAAA@CUGA
lpl-b UGUGCAAAUC|IC/A-UGCAAAACUGA
Mgl-b UGUGCAAAUCIA-UGCAAAACUGA
paralogue ¢ | Pma-c UGUGGAAAUCE'uGcAAAAcuGA
(unigue to cyclostomes) [ Lpl-c U G UGCAAAUCI|ICICICCUGCAAAACUGA
Mgl-c UGUGCAAAUCICE@AUGCAAAACUGA

Fig. 3. The presence of paralogues of more primitive miRNA families and
conserved nucleotide substitutions both support the monophyly of Cyclo-
stomata. Shown is miR-19 as an example of a group of miRNAs that shows
both conserved nucleotide substitutions (19a; Top, bold) with respect to the
other paralogue(s) (19b and 19¢; Middle and Bottom) and the possession of
a paralogue (miR-19¢) not present in any known gnathostome (Dataset S1
has the complete description of both paralogues and nucleotide sub-
stitutions supporting cyclostome monophyly). Cmi, Callorhinchus milii; Dre,
Danio rerio; Hsa, Homo sapiens; Lpl, Lampetra planeri; Mgl, Myxine gluti-
nosa; Pma, Petromyzon marinus.

Heimberg et al.

osteichthyans (the clade that they circumscribe) but of vertebrates
more generally. Our phylogenetic results indicate that a compar-
ison of existing data with lampreys will provide an adequate test
of the hypothesis, because together, these taxa circumscribe the
clade of all living vertebrates (Fig. 2). Expression data for seven
different P. marinus organs are shown in Fig. 4. Similar to Danio
(53, 54) and Mus (55), each lamprey organ expresses a specific
suite of miRNAs that gives the organ a unique miRNA expression
profile. For example, ignoring the ubiquitously expressed let-7,
the four highest expressed miRNA genes in the lamprey brain are
miR-9a, miR-338a, miR-138a, and miR-125a, whereas the four
highest expressed miRNA genes in the lamprey gut are miR-194,
miR-192, miR-200a, and miR-429 (Fig. 4 and Dataset S4). Fur-
thermore, similar to mouse (56), the lamprey brain is the most
complex of the organs queried, and the gut and liver are the least,
at least in terms of the number of different miRNAs expressed
(Dataset S4). With just one exception (the heart), the miRNA
with the highest expression in each of the lamprey organs is also
expressed in that same organ in both Danio (Fig. 4 Insets) and
hagfish (Fig. S4). Thus, homologous organs in vertebrates more
often than not (57) express homologous miRNAs, consistent with
the hypothesis that miRNAs (e.g., miR-30 and miR-122) were
instrumental in the evolutionary origin of vertebrate-specific
organs (e.g., kidney and liver, respectively) (41).

Conclusions

Hinging on debate over the interrelationships of living jawless
and jawed vertebrates has been the nature of the ancestral ver-
tebrate and the pattern and sequence of organismal and genomic
evolution, on which hypotheses of developmental evolution are
based. We conclude that cyclostomes are monophyletic, and thus,
characters reconstructed as lamprey and gnathostome synapo-
morphies are actually shared primitive characters of all verte-
brates, with hagfish anatomy having degenerated to a remarkable
degree (18, 36). Cyclostome paraphyly (22) and a hierarchical
distinction between craniates and vertebrates (33) afforded in-
sight into the assembly of vertebrate characters (58). With the
recognition of cyclostome monophyly, however, that taxonomic
distinction and evolutionary insight are lost. Evidently, the crown
ancestor of vertebrates was more complex, phenotypically and
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Fig. 4. miRNA expression profile of seven different lamprey organs. Only the top 10 highest expressed miRNAs (Dataset S4) are shown, and each specific
miRNA is given a distinct color for all pie charts. Below each pie chart is the expression pattern of the highest expressed gene in the lamprey library in the
zebrafish (54)—note the concordance between the lamprey and zebrafish for all organs queried except for the heart (Bottom). Pma, Petromyzon marinus;

Dre, Danio rerio; Mmu, Mus musculus.

developmentally, than has been perceived hitherto (58), making
attempts to explain mechanistically the distinction between ver-
tebrates and invertebrates even more formidable. Nonetheless, in
reconciling phylogenies grounded in genotype and phenotype, we
provide a holistic framework for uncovering the formative events
in the evolutionary emergence of vertebrates. We predict that the
renaissance in hagfish embryology (59) will further show the loss
of vertebrate characters, but with the recognition of cyclostome
monophyly, attempts to dissect the assembly of the vertebrate
body plan can be focused on comparative analysis of lamprey
development and genomics. The prolific origin of miRNA fami-
lies in the vertebrate stem-lineage and their expression in verte-
brate-specific tissues and organs supports the idea that miRNAs
played a pivotal role, as part of a broader gene regulatory land-
scape, in the assembly of the vertebrate body plan (41).

Methods

ibrary Construction.
om Highland Water,

upstream of Millyford Bridge, New Forest National Park (United Kingdom)
and allowed to develop in captivity at 16 °C in filtered river water until
hatching. Adult sea lamprey (P. marinus) were collected from Lake Cham-
plain (Vermont), and a single individual was dissected to isolate the brain,
gut, gills, heart, kidney, liver, mouth and tongue, muscle, and skin. Atlantic
hagfish (M. glutinosa) were collected at Kristineberg Marine Station, Gul-
marsfjord, Sweden and purchased from Gulf of Maine Inc. (Pembroke, ME).
RNA was extracted from 20 combined larval L. planeri, from each dissected
tissue and organ derived from a single adult P. marinus, and from a single
adult M. glutinosa. From these animals, small RNA libraries were constructed
individually and sequenced with a unique barcode using 454 DNA pyrose-
quencing (Branford, CT) as described previously (43). The resulting reads were
then analyzed with miRMiner to identify known and unknown miRNAs (43),
with additional filters for transfer and ribosomal RNAs written with custom
shell scripts.

RNA was also extracted from the brain, gut, heart, kidney, liver, muscle, and
skin derived from a single adult M. glutinosa, and northern analyses using
Starfire probes (IDT) designed against the mature miRNA sequence (sequences
available on request) were performed as previously described (43). Catshark
(S. canicula) embryos were obtained from commercial sources, and RNA was
extracted from five embryos near hatching. S. canicula RNA was sequenced
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for small RNAs using the Illlumina sequencing platform and analyzed using
miRMiner as described (43). All genomic inquiries for miRNAs in P. marinus and
Callorhinchus milii (elephant shark) were made through National Center for
Biotechnology Information using the available genomic traces. All alignments
and sequence analyses were performed using MacVector (v. 10.0.2). Secondary
structures of precursor miRNA transcripts were predicted using mFold (60).

Morphological Analysis. The phenotypic dataset was coded directly from the
primary literature and from direct observation of anatomy (S/ Text). We
designed and coded characters using a contingent coding strategy, because it
is the only approach that is theoretically and operationally valid in instances,
as here, where many of the characters are inapplicable to the outgroup (61).
We restricted our analyses to a parsimony-based approach, because pheno-
typic support for hagfish—-lamprey—gnathostome relationships has always
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been debated using this method of phylogenetic inference. The cladistic
parsimony analyses, Bremer support index calculations, and Templeton and
Kishino—Hasegawa tests were performed in PAUP*4.0b10 running on Mac
0S9 within a Sheepshaver 2.3 emulator on an Intel MacBook.
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